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Abstract. A novel method for calculating the polarization energy of a biomolecular 
complex is developed. It  is based on direct calculation of the interaction between 
the unperturbed charge distribution of one molecule and the perturbed charge 
distribution of the other. This "multipole-based polarization energy" is shown to 
include charge transfer. The method can alternatively incorporate Gaussian multi- 
poles in place of the usual distributed point multipoles. This definition of the 
polarization energy is also used as the basis of a partitioning scheme for the total 
supermolecule interaction energy. Results are presented for the formamide/formal-  
dehyde complex. 
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1 Introduction 

When a molecule experiences an electric field, its charge distribution will relax in 
response to that field. The energy associated with this relaxation is known as the 
polarization (or induction) energy. It  is a negative (or zero) quantity, as can be seen 
from its appearance at second order in perturbation theory, or from the simple 
argument  that, if such a relaxation were to lead to an increase in energy, it would 
not occur. There are also small contributions to the polarization energy at higher 
order in perturbation theory; these are not considered here. In the case of a bi- 
molecular complex, the polarization energy has two components,  one from the 
relaxation of each molecule's charge distribution in the electric field of the other. 

In Hayes-Stone  Intermolecular Perturbation Theory (IMPT) [1], the polariza- 
tion energy is expressed in terms of excitations from the occupied orbitals of one 
molecule into the virtual orbitals of the same molecule (A --+ A transitions). A re- 
lated energy term, which also appears at second order in perturbation theory, is 
the charge transfer energy [2]. This is described in I M P T  by excitations from the 
occupied orbitals of one molecule into the virtual orbitals of the other (A ~ B 
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transitions). For a sufficiently large basis set, the charge transfer term would be 
spurious, since any physical effect of this kind could be mathematically described 
by occupied and virtual orbitals derived from the basis functions of the same 
molecule. Hence, in the limit of large basis sets, the charge transfer becomes part of 
the polarization energy. It is, however, a separate term for practical purposes when 
using basis sets such as 6-31G* (used here) or smaller. 

Applying the general formula of Stone [3] to the case where the number of 
interacting molecules is two, the polarization energy can be written as follows: 

[AQt T t, Q,) + (Q, T tu AQu)]" (1) g p o l  = 1 2  a ab b a ab b 

tu  

In this equation, Q represents the undistorted charge distribution, AQ the change in 
the charge distribution on relaxation in the other molecule's electric field, and T is 
the interaction tensor [3]. The indices a and b denote which of the two molecules the 
charge distribution is associated with, and the subscripts t and u, which are summed 
over, represent the different multipolar components of the interaction energy [3]. 

Polarization energies have been calculated by a number of methods, including 
IMPT [1], Morokuma analysis [4] and distributed polarizabilities [5-]. This work 
is an attempt to assess the possibility of direct calculation of the polarization 
energy from Q and AQ. 

2 Theory 

The molecular charge distribution Q is conveniently represented by Distributed 
Multipole Analysis (DMA) [6]. The multipolar electrostatic energy between the 
unperturbed monomer charge distributions of molecules A and B, denoted EoMo in 
this paper, is given by [3] 

E~o a ab b = ~ (Q, T ,u Q.). (2) 
tu  

It is calculated simply from the DMA mulfipoles; the "M" superscript denotes the 
"multipole-based" method of calculation, which excludes the penetration energy [7]. 
By performing a supermolecule calculation, the relaxed charge distribution of the 
complex ((2 + AQ) can be obtained. While the apportioning of this charge distribution 
between the monomers is somewhat arbitrary, a DMA of the supermolecule wave 
function provides a well-defined way of achieving this. That part of the supermolecule 
charge distribution assigned by the DMA procedure to the atoms of molecule A is 
identified with (Qa + AQa) and that part assigned to the atoms of molecule B is 
identified with (Qb + AQb). The relationship between these AQ and those of Eq. (1) is 
discussed below. One can define a multipolar interaction energy between the perturbed 
supermolecule charge distribution of molecule A and the unperturbed monomer 
charge distribution of molecule B, and this quantity E,Mo is given by 

a a ab EU, o = ~',[(Qt + A Q t ) T t ~  Qb] 
tu 

= ~ [(Q~ T ~b nb~ .b nu l l  t, ~ , ,  + (AQ~ T t, ~, , j j  
tU 

= EoMo + ~ [AQ~ T t~ Q u]. (3) 
tU 
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One may also define the analogous quantity EoM,: 

a ab b EMo, = EMo + ~. [Qt T,.  AQ,]. (4) 
tU 

E,~o and EoM, can both be evaluated easily using Stone's program ORIENT [8] with 
monomer multipoles for one molecule and supermolecule multipoles for the other, 
and EoMo by using monomer multipoles for each. From the definitions of EoMo, E,Mo 
and EoM,, it follows trivially that 

~--- A a T a b / " ) b ]  a ab b E* Mo + EoM* -- 2EoMo 2 [( Q, - , ,  ~,,  + (Q, T ,, AQ,)], 
tu 

(5) 

and by comparison with Eq. (1) one can write 

EpMol 1 M = y ( E , o  + EoM, - 2E~o) .  (6) 

One must, however, be wary of identifying this quantity unambiguously with 
the previous definition of the polarization energy. The AQ a and AQ b used here 
are in fact defined somewhat differently from those in Eq. (1). This method permits 
charge transfer between the monomers, so that when Qa and Qb represent neutral 
molecules, (Qa+ AQa) and (Qb+ AQb) may have small net charges, which will 
be equal and opposite. Thus, the polarization energy calculated by the multi- 
pole-based method M (Epo3 will include a charge transfer component. The AQ 
used here will also be affected by exchange and the Pauli exclusion principle, 
effects which do not form part of the usual "classical" induction energy. 
Furthermore, these AQ depend on the apportioning of multipoles originally 
centred at the overlap centres of two Gaussians in the supermolecule 
charge distribution; the DMA method re-expresses these multipoles as a new 
series at the nearest expansion site [6]. Overlap charge density between two 
Gaussians on different molecules will be assigned to one molecule or the other, 
on the basis of the nearest atom (the expansion sites used here being the atomic 
nuclei). 

Hayes and Stone originally [1] defined charge transfer in a manner that was 
susceptible to basis set superposition error (BSSE), but more recently [23 Stone 
has published a definition that is free of BSSE. The charge transfer incorporated in 
Ep~l is somewhat susceptible to BSSE; it is not identical to either of Stone's 
definitions. The multipole-based method also ignores the effect of charge overlap; 
Eo~o, E,Mo and EoM, all exclude the penetration energy [7]. 

One may include the effect of charge overlap on the polarization energy by 
using Gaussian multipoles [7], instead of the usual distributed point multipoles 
defined by Stone [6]. The energy components calculated in this way are denoted 
Eo~o, G E,o, EGo, and Epol, the latter being the "Gaussian polarization energy". These 
quantities all include a penetration energy component. They are calculated in an 
exactly analogous manner to the corresponding multipole-based components, 
using Wheatley's program GMUL [7]. In principle, EoGo is the exact electrostatic 
interaction energy between the monomer wave functions, as calculated by IMPT 
El.I, 

E~o = fpA(rl) pB(r])rl-21 drl drz, (7) 
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where pa(r,) is the total (electronic plus nuclear) charge density of molecule A at 
rl, and so on. In practice, some small approximations are made to expedite its 
calculation (see [7] and also below). 

In order to assess the results calculated with the multipole-based method, 
a benchmark is required. The benchmark chosen is the sum of the polarization and 
charge transfer terms from perturbation theory. The polarization part of the 
benchmark energy is taken from Morokuma analysis [4]. The difference between 
the Morokuma and IMPT polarization energies, which has its origin in the 
uncoupled nature of IMPT [1], is small. However, the Morokuma polarization is 
identical to the value calculated by distributed polarizabilities [5] at longer range 
[9], and expected also to be identical to the multipole-based polarization in this 
region (where the charge transfer would have decayed effectively to zero). Thus, it 
makes a better benchmark than the IMPT polarization energy. The charge transfer 
contribution to the benchmark energy is calculated using Stone's recent BSSE-free 
definition [2]. 

It is also possible to partition the supermolecule energy into three components. 
The total supermolecule interaction energy Esup is known from the ab initio 
calculation performed to obtain the supermolecule multipoles (it is the difference 
between the total SCF energies in the supermolecule and the two monomer 
calculations). The multipolar electrostatic energy (i.e. excluding penetration) is 
simply EoMo, and is considered to constitute one term of the partitioning. The second 
term of the partitioning is the multipole-based polarization energy, namely M Epol, 
which represents the combined polarization and charge transfer energy. The 

M remaining term, gerp, represents the exchange repulsion and penetration; it is 
calculated simply by subtraction: 

EeMp EsCp EoM0 M = --  - -  Epo 1. (8) 

EsCup is the BSSE-corrected supermolecule interaction energy. The BSSE is esti- 
mated by calculating the difference between Stone's original BSSE-prone [1] and 
new BSSE-free [2] definitions of the charge transfer energy, both these quantities 
being readily available. Strictly speaking, it might be more accurate to correct the 
supermoleCule interaction energy via the counterpoise method [10], rather than 
with a quantity derived from IMPT. The extra computational expense, however, 
was not considered to be justified. If this correction is not made, it is found that E~p 
may become significantly negative in some circumstances. Any BSSE component 
of M Epo,, which is expected to be significantly smaller than the BSSE in the 
supermolecule interaction energy, is not corrected for. 

Where Gaussian multipoles are used, the repulsion term EeGr includes exchange 
repulsion and possibly some BSSE, but the penetration is incorporated in Eo~o. The 
repulsion is given by 

Eo% ° = - - Epo,. (9) 

Compared with the partitionings obtained by IMPT [1] or Morokuma 
analysis [4], this method has the advantage of representing the interaction 
concisely in only three terms, but the disadvantage is that the main repulsive 
term is not obtained directly, but by subtraction. The method, like 
Morokuma analysis, describes only the SCF energy and a dispersion term would 
have to be added if this partitioning were to be used as the basis for a model 
potential. 
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3 Computational methods 

The system chosen for the test calculations is the singly hydrogen bonded formam- 
ide/formaldehyde complex (Fig. 1). The geometries chosen have the two molecules 
coplanar, with the N-H  ... O atoms collinear. The distance N..- O is varied from 
2.7 to 7.0 ~., the IMPT energy minimum (when dispersion is taken into account) is 
at 2.89 A. 

All the ab initio calculations in this work are performed using the CADPAC 
[-11] suite of quantum chemistry programs, with CADPAC library 6-31G* basis 
sets. The monomer multipoles, supermolecule multipoles and EsCp are calculated 
in this way. Only one calculation has to be performed for each monomer, but 
a separate supermolecule calculation is required for each different geometry. All 
sets of multipoles are outputted in a format very similar to that required by 
ORIENT [8]. The supermolecule multipoles are divided into two files, one for the 
atoms from each monomer. This procedure allows one to use ORIENT to calculate 
Eo~o, E,Mo and EoM, in a straightforward manner for each geometry, with all 
multipole/multipole terms up to and including r -  5 (i.e. up to a total rank of 4) being 
included. 

The calculation of the corresponding Gaussian components Eo~o, E,Go and 
Eo~, is carried out in an analogous manner using the GMUL program [7]. The 

F o r m a m i d e  / F o r m a l d e h y d e  

S ing ly  H y d r o g e n  B o n d e d  C o n f o r m a t i o n  
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O Hydrogen 

• Nitrogen 

Oxygen 

Fig. 1. The 
formamide/formaldehyde 
complex used in this 
work. The two 
molecules are coplanar, 
with the N - H  .-- O 
atoms collinear. The 
angle H.- .  O = C  is fixed 
at 138 °, corresponding 
to the minimum energy 
configuration within 
the constraints of 
coplanarity and 
N - H  ... O collinearity 
[9]. The distance 
N. . -  O is varied from 
2.7 to 7.0 ,~, the I M P T  
energy minimum (when 
dispersion is taken into 
account) is at 2.89 ,~. 
The N - H  distance is 
1.01 ~,. In terms of the 
parameters defined in 
Ref. [-9], these 
geometries have 
~ = 4 2 ° , f l = 0  °, 
co = 0 °. This figure was 
produced using the 
program 
MOLSCRIPT  [-121 
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division of the supermolecule multipoles into two sets has to be carried out  by 
careful m a n u a l  editing. In  order to prevent large amount s  of C P U  time being used 
up calculat ing the very small penetra t ion energies between dis tant  sites, the use of 
the fulloGaussian mul t ipole  protocol  is restricted to those centres less than  6 bohr  
(3.175 A) apart,  the other site-site interact ions being treated by a point  mul t ipole  
procedure  [7]. This is expected to have an insignificant effect on the calculated Ep%l 
values. It  will have a small bu t  noticeable effect on Eo~o at the smaller intermolecu-  
lar separations.  

4 Results 

The calculated values of EpMol and  Ep6ol are shown in Table  1, a long with the 
benchmark  energies. The ratios of firstly the mul t ipole-based polar izat ion energy, 
and  secondly the Gauss ian  polar izat ion energy, to the benchmark  are shown as 
funct ions of N . - .  O distance in Fig. 2. The mult ipole-based polar izat ion energy 
exceeds the benchmark  energy by up to 45% for geometries in the region of the 
I M P T  min imum,  but  tends towards it at longer distances. The mult ipole-ba~ed and  
benchmark  energies are very similar for N ... O distances beyond  5.0 A. This 
behaviour  is quali tat ively similar to that  of the ratio of the polar izat ion energies 
calculated with dis tr ibuted polarizabilities and by M o r o k u m a  analysis, which has 
also been analysed for this system [9]. The Gauss ian  polar iza t ion energy, which 
incorporates  the effect of charge overlap on the multipoles, is significantly smaller 
than  the benchmark  at the shortest distances, bu t  very close to it at the I M P T  
m i n i m u m  (probably fortui tously so). As the N . . .  O distance is further increased, 
the Gauss ian  polar izat ion energy becomes very similar to the mul t ipole-based 
value (the charge overlap decreasing rapidly with distance), and  thus follows the 
benchmark  energy beyond  5.0 A. 

The par t i t ionings  of the BSSE-corrected supermolecule in teract ion energy are 
shown in Table  2. The variat ions of the different energy components  with N . - -  O 
distance are comparable  to those of their I M P T  counterpar ts  [9]. In  general, the 

Table 1. Multipole-based and Gaussian polarization energies compared with the benchmark 

Benchmark energy [kJ tool- 1] Multipole-based Gaussian polariza- 
polarization energy tion energy 
[kJ mol-1] and [kJ tool-1] and 
ratio to benchmark ratio to benchmark 

dNo [A] Epol ECT Total Ep~ 1 Ratio EpCol Ratio 

2.70 -- 7.33 - 7.61 - 14.94 -- 19.17 1.283 - 9.30 0.623 
2.80 -- 5.31 - 5.41 - 10.71 - 14.81 1.383 -- 9.23 0.862 
2.89 -- 4.16 -- 4.07 -- 8.22 - 11.73 1.426 - 8.51 1.034 
3.00 - 3.21 -- 2.91 - 6.13 -- 8.88 1.449 - 7.30 1.192 
3.25 - 1.97 - 1.40 -- 3.37 - 4.92 1.460 -- 4.62 1.372 
3.50 - 1.27 -- 0.703 - 1.98 -- 2.83 1.432 - 2.80 1.416 
4.00 -- 0.577 -- 0.191 - 0.768 - 0.937 1.220 -- 0.939 1.223 
5.00 - 0.158 -- 0.0077 - 0.166 - 0.162 0.979 -- 0.162 0.979 
6.00 -- 0.0569 - 0.00006 -- 0.0570 - 0.0569 0.998 - 0.0569 0.998 
7.00 -- 0.0244 - 3 x 10-6 -- 0.0244 -- 0.0244 1.000 -- 0.0244 1.000 
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Fig. 2. The ratios of the multipole-based polarization energy (solid curve) and the Gauss ian  polariza- 
tion energy (dashed curve) to the benchmark  energy, as functions of N - . .  O distance 

Table 2. Mult ipole-based and Gauss ian  parti t ionings of the BSSE-corrected supermolecule energy 

Supermolecule Componen t s  of multipole-based Componen t s  of Gauss ian  
energy energy part i t ioning [kJ m o l -  ' ]  energy parti t ioning [kJ m o l -  1] 
[kJ m o l -  1] 

2.70 0.05 - 35.10 - 19.17 54.32 - 49.89 - 9.30 59.25 
2.80 - 8.64 - 30.89 - 14.81 37.06 - 40.72 - 9.23 41.31 
2.89 - 13.39 - 27.71 - 11.73 26.05 - 34.42 - 8.51 29.54 
3.00 - 16.49 - 24.44 - 8.88 16.83 - 28.57 - 7.30 19.39 
3.25 - 17.63 - 18.84 - 4.92 6.13 - 19.78 - 4.62 6.77 
3.50 - 15.69 - 14.94 - 2.83 2.07 - 15.22 - 2.80 2.33 
4.00 - 10.95 - 9.99 - 0.94 - 0.02 - 10.01 - 0.94 0.00 
5.00 - 5.43 - 5.24 - 0.16 - 0.02 - 5.24 - 0.16 - 0.02 
6.00 - 3.19 - 3.14 - 0.06 0.00 - 3.14 - 0.06 0.00 
7.00 - 2.06 - 2.04 - 0.02 0.00 - 2.04 - 0.02 0.00 

p a r t i t i o n i n g  d o e s  a p p e a r  t o  w o r k  r e a s o n a b l y  we l l .  M Eerp ,  h o w e v e r ,  b e c o m e s  s l i g h t l y  
n e g a t i v e  a t  4 .0  a n d  5 .0  A;  t h i s  w o u l d  b e  e v e n  m o r e  p r o n o u n c e d  if  t h e  B S S E  

c o r r e c t i o n  w e r e  n o t  m a d e  (Eo~p w o u l d  t h e n  b e  - 1 . 5 4  k J m o 1 - 1 ,  r a t h e r  t h a n  

- 0e02 k J m o l - 1  a t  4 .0  A).  T h e  G a u s s i a n  r e p u l s i o n  e n e r g y ,  Eel, is  a l s o  n e g a t i v e  a t  

5 .0  A ,  b u t  i t s  e x c l u s i o n  o f  t h e  p e n e t r a t i o n  e n s u r e s  t h a t  i t  is  s i g n i f i c a n t l y  m o r e  

r e p u l s i v e  t h a n  Ee~p a t  s h o r t e r  d i s t a n c e s .  T h e  s u p e r m o l e c u l e  i n t e r a c t i o n  e n e r g y  h a s  

i t s  m i n i m u m  a t  a g r e a t e r  N . . .  O d i s t a n c e  t h a n  t h e  I M P T  o n e ,  s i n c e  t h e  I M P T  

c a l c u l a t i o n s  1-9] i n c l u d e d  t h e  e f f ec t  o f  d i s p e r s i o n .  
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5 Discussion 

The multipole-based method gives rise to a polarization energy including charge 
transfer. The multipole-based polarization energy is seen to depend somewhat on 
the assignment of overlap charge density between the two molecules in the 
calculation of the supermolecule multipoles, and it is also affected by exchange and 
Pauli-exclusion effects. Its evaluation also requires an ab initio dimer calculation, as 
with the IMPT [-1] and Morokuma [-4] polarization energies; the distributed 
polarizabilities approach [-5] has the considerable advantage of requiring only 
monomer calculations. The approach of calculating the polarization energy dir- 
ectly from Q and AQ has, nonetheless, been shown to be a feasible one. 

The multipole-based method provides quite a different approach to the polar- 
ization energy from the IMPT [-1], Morokuma [-4] and distributed polarizabilities 
[5] methods. It does not reproduce accurately their results, for reasons outlined 
above. It is clearly not an appropriate method for use in routine situations. It may, 
however, be of interest in future to investigate more deeply the reasons why the 
multipole-based method behaves as it does. For instance, the multipole-based 
approach might be compared with damped methods for calculating the polariza- 
tion energy, which would avoid the problem of short-range singularities. The 
differences between the methods also illustrate the difficulty in defining the polar- 
ization energy unambiguously. 

The use of Gaussian multipoles gives, for the test system, polarization energies 
significantly smaller in magnitudeothan those obtained with point multipoles (up to 
an N.- .  O distance of about 3.5 A). In terms of the partitioning, however, this is 
more than counterbalanced by the larger electrostatic energy (including penetra- 
tion). Thus, the sum of the electrostatic and polarization terms is more negative, 
and the repulsive term (excluding penetration) therefore more positive than with 
point multipoles. 

6 Conclusions 

The multipole-based approach to the calculation of the polarization energy dir- 
ectly from perturbed and unperturbed charge distributions has been shown to be 
feasible, though not appropriate for routine calculation of polarization energies. 
The polarization energy calculated in this way includes charge transfer, and thus 
the benchmark with which it is compared is the sum of the (Morokuma) polariza- 
tion energy and the (IMPT) charge transfer energy. This comparison, however, 
does not take account of exchange and Pauli-exclusion effects on the multipole- 
based polarization energy. For the test system of formamide/formaldehyde, the 
multipole-based polarization energy is an overestimate, exceeding the benchmark 
by up to 45% in the region of the IMPT minimum. It does, however, agree with the 
benchmark energy at longer range. A refinement of the method, utilising Gaussian 
multipoles, gives somewhat better agreement with the benchmark energy for the 
test system. 
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